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Validity of a macroscopic description in dilute polymeric solutions

P. Ilg and I. V. Karlin*
ETH-Zürich, Department of Materials, Institute of Polymers, CH-8092 Zu¨rich, Switzerland

~Received 2 February 2000!

Derivation of macroscopic equations from the simplest dumbbell models is revisited. It is demonstrated that
the onset of the macroscopic description is sensitive to the flows. For Peterlin’s approximation@Makromol.
Chem.338, 44 ~1961!# to Warner’s finitely extensible nonlinear elastic spring-force model@Ind. Eng. Chem.
Fundam.11, 379 ~1972!# ~FENE-P!, small deviations from the Gaussian solution undergo a slow relaxation
before the macroscopic description sets on. Some consequences of these observations are discussed.

PACS number~s!: 83.20.Di, 05.20.Dd, 05.10.Gg
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Dumbbell models of dilute polymeric solutions are t
simplest kinetic~microscopic! models of complex fluids@1#.
The macroscopic description in this context is an equa
for the stress tensor~the constitutive equation!. Since simple
models form a basis for our understanding of how the m
roscopic description sets on within the kinetic picture,
makes sense to study the derivation of the macroscopic
scription in every detail for those cases.

In this paper, we revisit the derivation of the constituti
equation from the simplest~solvable! dumbbell models. We
focus our attention on the following question:How well is
the macroscopic description represented by the class
Gaussian solution?It appears that the answer to this questi
is sensitive to the flow. For weak enough flows, all micr
scopic solutions approach rapidly the Gaussian solut
which manifests validity of the standard macroscopic
scription. However, for strong flows, relaxation to the Gau
ian solution becomes much slower, significant deviatio
persist over long times, in which case the macroscopic
scription is less valid. We discuss a possible impact of t
observation on the statement of the problem of macrosc
description in related more complicated problems.

We consider the following simplest one-dimensional
netic equation for the configuration distribution functio
C(q,t), whereq is the reduced vector connecting the bea
of the dumbbell:

] tC52]q$a~ t !qC%1
1

2
]q

2C. ~1!

Here

a~ t !5k~ t !2~1/2! f „M1~ t !…, ~2!

k(t) is the given time-dependent velocity gradient,t is the
reduced time, and the function2 f q is the reduced spring
force. Functionf may depend on the second moment of t
distribution functionM15*q2C(q,t)dq. In particular, the
casef [1 corresponds to the linear Hookean spring, wh
f 5@12M1(t)/b#21 corresponds to Peterlin’s approximatio
to Warner’s finitely extensible nonlinear elastic spring-for
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model ~FENE-P, Ref.@2#!. The second momentM1 occur-
ring in the FENE-P forcef is the result of the preaveragin
approximation to the original FENE model~with nonlinear
spring force f 5@12q2/b#21). Leading to closed constitu
tive equations, the FENE-P model is frequently used
simulations of complex rheological flows as well as the r
erence for more sophisticated closures to the FENE mo
@3#. The parameterb changes the characteristics of the for
law from Hookean at small extensions to a confining for
for q2→b. Parameterb is roughly equal to the number o
monomer units represented by the dumbbell and sho
therefore be a large number. In the limitb→`, the Hookean
spring is recovered. Recently, it has been demonstrated
the FENE-P model appears as first approximation withi
systematic self-consistent expansion of nonlinear forces@4#.

Equation ~1! describes an ensemble of noninteracti
dumbbells subject to a pseudoelongational flow with fix
kinematics. As it is well known, the Gaussian distributio
function,

CG~M1!5~1/A2pM1!exp@2q2/~2M1!#, ~3!

solves Eq.~1! provided the second momentM1 satisfies

dM1

dt
5112a~ t !M1 . ~4!

Solution ~3! and ~4! is the valid macroscopic description
all other solutions of Eq.~1! are rapidly attracted to the fam
ily of Gaussian distributions~3!. In other words@5#, the spe-
cial solution~3! and~4! is the macroscopic description if Eq
~3! is the stable invariant manifold of the kinetic equatio
~1!. If not, then the Gaussian solution is just a member of
family of solutions, and Eq.~4! has no meaning of the mac
roscopic equation. Thus, the complete answer to the ques
of validity of Eq. ~4! as the macroscopic equation requires
study of dynamics in the neighborhood of the manifold~3!.
Because of the simplicity of model~1!, this is possible to a
satisfactory level even forM1-dependent spring forces.

Let Mn5*q2nCdq denote the even moments~odd mo-
ments vanish by symmetry!. We consider deviationsmn

5Mn2Mn
G, where Mn

G5*q2nCGdq are moments of the
1441 ©2000 The American Physical Society
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Gaussian distribution function~3!. Let C(q,t0) be the initial
condition to Eq.~1! at time t5t0. Introducing functions,

pn~ t,t0!5expF2nE
t0

t

a~ t8!dt8G , ~5!

where t>t0, andn>2, theexact time evolution of the de-
viationsmn for n>2 reads

m2~ t !5p2~ t,t0!m2~ t0!, ~6!

and

mn~ t !5Fmn~ t0!

1n~2n21!E
t0

t

mn21~ t8!pn
21~ t8,t0!dt8Gpn~ t,t0!,

~7!

for n>3. Equations~5!, ~6!, and~7! describe evolution nea
the Gaussian solution for arbitrary initial conditionC(q,t0).
Notice that explicit evaluation of the integral in Eq.~5! re-
quires solution to the moment equation~4!, which is not
available in the analytical form for the FENE-P model.

It is straightforward to conclude that any solution with
non-Gaussian initial condition converges to the Gaussian
lution asymptotically ast→` if

lim
t→`

E
t0

t

a~ t8!dt8,0. ~8!

However, even if this asymptotic condition is met, deviatio
from the Gaussian solution may survive for considerablefi-
nite times. For example, if for some finite timeT, the integral
in Eq. ~5! is estimated as* t0

t a(t8)dt8.a(t2t0), a.0, t

<T, then the Gaussian solution becomes exponentially
stable during this time interval. If this is the case, the m
ment equation~4! cannot be regarded as the macrosco
equation. Let us consider specific examples.

For the Hookean spring (f [1) under a constant elonga
tion (k5const), the Gaussian solution is exponentially sta
for k,0.5, and it becomes exponentially unstable fork
.0.5. The exponential instability in this case is accompan
by the well-known breakdown of the solution to Eq.~4! due
to infinite stretching of the dumbbell. Similar instability ha
been found numerically in three-dimensional flows for hi
Weissenberg numbers@6#.

A more interesting situation is provided by the FENE
model. As it is well known, due to the singularity of th
FENE-P force, the infinite stretching is not possible, a
solutions to Eq.~4! are always well behaved. Thus, in th
case, nonconvergence to the Gaussian solution~if any!, does
not interfere with the collapse of the solution to Eq.~4!.

Equations~4! and ~6! were integrated by the fifth-orde
Runge-Kutta method with adaptive time step. The FENE
parameterb was set equal to 50. The initial condition wa
C(q,0)5C(12q2/b)b/2, whereC is the normalization~the
equilibrium of the FENE model, notoriously close to th
FENE-P equilibrium@7#!. For this initial condition, in par-
ticular, m2(0)526b2/@(b13)2(b15)# which is about 4%
o-
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-
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of the value ofM2 in the Gaussian equilibrium forb550. In
Fig. 1 we demonstrate deviationm2(t) as a function of time
for several values of the flow. FunctionM1(t) is also given
for comparison. For small enoughk we find an adiabatic
regime, that is,m2 relaxes exponentially to zero. For strong
flows, we observe an initialfast runawayfrom the invariant
manifold with um2u growing over three orders of magnitud
compared to its initial value. After the maximum deviatio
has been reached,m2 relaxes to zero. This relaxation is ex
ponential as soon as the solution to Eq.~4! approaches the
steady state. However, the time constant for this exponen
relaxationua`u is very small. Specifically, for largek,

a`5 lim
t→`

a~ t !52
1

2b
1O~k21!. ~9!

Thus, the steady-state solution is unique and Gaussian
the stronger the flow, the larger is the initial runaway fro
the Gaussian solution, while the return to it thereafter
comes flow independent. Our observation demonstrates
though the stability condition~8! is met, significant devia-
tions from the Gaussian solution persist over the times w
the solution of Eq. (4) is already reasonably close to t
stationary state.If we accept the usually quoted physical
reasonable minimal value of parameterb of the order 20 then
the minimal relaxation time is of order 40 in the reduc
time units of Fig. 1. We should also stress that the two lim
k→` andb→`, are not commutative; thus it is not surpri
ing that the estimation~9! does not reduce to the above
mentioned Hookean result asb→`. Finally, peculiarities of
convergence to the Gaussian solution are even furthere
we consider more complicated~in particular, oscillating!
flows k(t). We close this paper with several comments.

~i! From the standpoint of a general theory of mac
scopic description@5#, the set of Gaussian distributions~3! is
the invariant manifold of the kinetic equation~1!, while Eq.

FIG. 1. Deviations of reduced moments from the Gaussian
lution as a function of reduced timet in pseudoelongation flow for
the FENE-P model. Upper part: reduced second momenX
5M1 /b. Lower part: reduced deviation of fourth moment fro
Gaussian solutionY52m2

1/2/b. Solid: k52, dashed-dotted:k51,
dashed:k50.75, long dashed:k50.5.
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~4! is the dynamic equation on the invariant manifold writt
in natural internal variables of this manifold. This macr
scopic description is supplemented by Eqs.~6! and ~7!,
which give the dynamics near the invariant manifo
Though the models we have considered here are simple
observations demonstrate that relaxation to the invar
manifold may be very slow depending on the flow.

~ii ! For more difficult models, such as the FENE mod
finding invariant manifold is a difficult task. However, the
exist methods to derive approximate invariant manifolds
iteration procedures@5#. It has been shown recently that th
er
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macroscopic description of any dumbbell model is a revis
Oldroyd eight-constant model for low Deborah number flo
@8#. For strong flows,ad hocclosures are frequently used an
little is known about their stability and whether they respe
the invariance principle. It would be interesting to find o
whether good closure approximations correspond to inv
ant manifolds, identify them, and learn about their stabili
Work in this direction is currently in preparation.
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