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Validity of a macroscopic description in dilute polymeric solutions
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Derivation of macroscopic equations from the simplest dumbbell models is revisited. It is demonstrated that
the onset of the macroscopic description is sensitive to the flows. For Peterlin’s approxifhasikmmol.
Chem.338, 44 (1961)] to Warner's finitely extensible nonlinear elastic spring-force mttel. Eng. Chem.
Fundam.11, 379 (1972] (FENE-P, small deviations from the Gaussian solution undergo a slow relaxation
before the macroscopic description sets on. Some consequences of these observations are discussed.

PACS numbg(s): 83.20.Di, 05.20.Dd, 05.10.Gg

Dumbbell models of dilute polymeric solutions are the model (FENE-P, Ref[2]). The second momeril; occur-
simplest kineticdmicroscopi¢ models of complex fluid§l].  ring in the FENE-P forcd is the result of the preaveraging
The macroscopic description in this context is an equatiormpproximation to the original FENE modékith nonlinear
for the stress tensdthe constitutive equationSince simple  spring forcef=[1—q%b] 1). Leading to closed constitu-
models form a basis for our understanding of how the mactive equations, the FENE-P model is frequently used in
roscopic description sets on within the kinetic picture, itsimulations of complex rheological flows as well as the ref-
makes sense to study the derivation of the macroscopic derence for more sophisticated closures to the FENE model
scription in every detail for those cases. [3]. The parameteb changes the characteristics of the force

In this paper, we revisit the derivation of the constitutive law from Hookean at small extensions to a confining force
equation from the simplegsolvable dumbbell models. We for g>—b. Parameteb is roughly equal to the number of
focus our attention on the following questiodow well is  monomer units represented by the dumbbell and should
the macroscopic description represented by the classicatherefore be a large number. In the lirhit> o0, the Hookean
Gaussian solution® appears that the answer to this questionspring is recovered. Recently, it has been demonstrated that
is sensitive to the flow. For weak enough flows, all micro-the FENE-P model appears as first approximation within a
scopic solutions approach rapidly the Gaussian solutionsystematic self-consistent expansion of nonlinear fofd¢s
which manifests validity of the standard macroscopic de- Equation (1) describes an ensemble of noninteracting
scription. However, for strong flows, relaxation to the Gauss-dumbbells subject to a pseudoelongational flow with fixed
ian solution becomes much slower, significant deviationkinematics. As it is well known, the Gaussian distribution
persist over long times, in which case the macroscopic defunction,
scription is less valid. We discuss a possible impact of this
observation on the statement of the problem of macroscopic G )
description in related more complicated problems. YE(My)=(1N27M)exd —q/(2My) ], ()

We consider the following simplest one-dimensional ki-
netic equation for the configuration distribution function - g
V¥ (q,t), whereq is the reduced vector connecting the beadsSOIVes Eq(1) provided the second momeht, satisfies
of the dumbbell:

dM;
1 5 T:].-an(t)Ml. 4)
atllfz—aq{a(t)qllf}nLE&q\If. (1)
Here Solution (3) and (4) is the valid macroscopic description if
all other solutions of Eq(l) are rapidly attracted to the fam-
a(t)=«k(t)— (12 f(M4(1)), (2) ily of Gaussian distribution§3). In other wordg5], the spe-

cial solution(3) and(4) is the macroscopic description if Eq.
x(t) is the given time-dependent velocity gradients the  (3) is the stable invariant manifold of the kinetic equation
reduced time, and the function fq is the reduced spring (1). If not, then the Gaussian solution is just a member of the
force. Functionf may depend on the second moment of thefamily of solutions, and Eq4) has no meaning of the mac-
distribution functionM ;= [q?¥(q,t)dq. In particular, the roscopic equation. Thus, the complete answer to the question
casef=1 corresponds to the linear Hookean spring, whileof validity of Eq. (4) as the macroscopic equation requires a
f=[1—M,(t)/b] ! corresponds to Peterlin’s approximation study of dynamics in the neighborhood of the manif¢sl
to Warner's finitely extensible nonlinear elastic spring-forceBecause of the simplicity of modél), this is possible to a
satisfactory level even favl ;-dependent spring forces.
Let M,=fqg*"Wdq denote the even momentsdd mo-
*Corresponding author. Electronic address: ments vanish by symmetry We consider deviationgs,
ikarlin@ifp.mat.ethz.ch =M,—M¢&, where M®=[q°"¥C®dq are moments of the
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Gaussian distribution functiof8). Let ¥ (q,t,) be the initial
condition to Eq.(1) at timet=t,. Introducing functions,

t
pn(t,to)=exr{2nf a(t’)dt’ |, (5)

to

wheret=t,, andn=2, the exacttime evolution of the de-
viations u,, for n=2 reads
H2(t) = pa(t,to) ma(to), (6)

and

n(t) =1 mn(to)

t
+n(2n—1)Jt tn-1(t)Py (1 to)dt’ | pa(t,to),
0

@)

for n=3. Equationg5), (6), and(7) describe evolution near
the Gaussian solution for arbitrary initial conditidn(q,tg).
Notice that explicit evaluation of the integral in EG) re-
quires solution to the moment equatiéf), which is not
available in the analytical form for the FENE-P model.
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FIG. 1. Deviations of reduced moments from the Gaussian so-
lution as a function of reduced tintein pseudoelongation flow for
the FENE-P model. Upper part: reduced second moment
=M, /b. Lower part: reduced deviation of fourth moment from
Gaussian solutioty = — x4 2%/b. Solid: k=2, dashed-dottedc=1,
dashedx=0.75, long dashedk=0.5.

It is straightforward to conclude that any solution with a of the value ofM., in the Gaussian equilibrium fdy=>50. In
non-Gaussian initial condition converges to the Gaussian STig. 1 we demonstrate deviation,(t) as a function of time

lution asymptotically ag— oo if

t
lim ft a(t")dt’<O0. (8
0

t—o

for several values of the flow. Functidvi,(t) is also given
for comparison. For small enough we find an adiabatic
regime, that isu, relaxes exponentially to zero. For stronger
flows, we observe an initidhst runawayfrom the invariant
manifold with |u,| growing over three orders of magnitude

However, even if this asymptotic condition is met, deviationscompared to its initial value. After the maximum deviation

from the Gaussian solution may survive for considerdble
nite times. For example, if for some finite tinie the integral
in Eq. (5) is estimated agﬁoa(t’)dt’>a(t—to), a>0,t

has been reacheg,, relaxes to zero. This relaxation is ex-
ponential as soon as the solution to Ed). approaches the
steady state. However, the time constant for this exponential

<T, then the Gaussian solution becomes exponentially unrelaxation|a..| is very small. Specifically, for large,

stable during this time interval. If this is the case, the mo-
ment equation(4) cannot be regarded as the macroscopic
equation. Let us consider specific examples.

For the Hookean springf&1) under a constant elonga-
tion (k= const), the Gaussian solution is exponentially stableThus, the steady-state solution is unique and Gaussian but
for k<0.5, and it becomes exponentially unstable for the stronger the flow, the larger is the initial runaway from
>0.5. The exponential instability in this case is accompaniedhe Gaussian solution, while the return to it thereafter be-
by the well-known breakdown of the solution to E¢) due  comes flow independent. Our observation demonstrates that,
to infinite stretching of the dumbbell. Similar instability has though the stability conditiori8) is met, significant devia-
been found numerically in three-dimensional flows for hightions from the Gaussian solution persist over the times when
Weissenberg numbef§]. the solution of Eq. (4) is already reasonably close to the

A more interesting situation is provided by the FENE-P stationary statelf we accept the usually quoted physically
model. As it is well known, due to the singularity of the reasonable minimal value of paramelesf the order 20 then
FENE-P force, the infinite stretching is not possible, andthe minimal relaxation time is of order 40 in the reduced
solutions to Eq.(4) are always well behaved. Thus, in this time units of Fig. 1. We should also stress that the two limits,
case, nonconvergence to the Gaussian soldif@ny), does k—o andb—«, are not commutative; thus it is not surpris-
not interfere with the collapse of the solution to E4). ing that the estimatior{9) does not reduce to the above-

Equations(4) and (6) were integrated by the fifth-order mentioned Hookean result &s—«. Finally, peculiarities of
Runge-Kutta method with adaptive time step. The FENE-Rconvergence to the Gaussian solution are even furthered if
parametetb was set equal to 50. The initial condition was we consider more complicatein particular, oscillating

i4—0(/(1).

a,=lima(t)=— b

t—oo

(€)

¥ (q,0)=C(1—g?/b)?? whereC is the normalizatior{the

equilibrium of the FENE model, notoriously close to the

FENE-P equilibrium[7]). For this initial condition, in par-
ticular, u,(0)=—6b?%/[(b+3)?(b+5)] which is about 4%

flows «(t). We close this paper with several comments.

(i) From the standpoint of a general theory of macro-
scopic descriptiofi5], the set of Gaussian distributiof®) is
the invariant manifold of the kinetic equatigfh), while Eq.



PRE 62 BRIEF REPORTS 1443

(4) is the dynamic equation on the invariant manifold written macroscopic description of any dumbbell model is a revised
in natural internal variables of this manifold. This macro- Oldroyd eight-constant model for low Deborah number flows
scopic description is supplemented by E@8) and (7),  [8]. For strong flowsad hocclosures are frequently used and
which give the dynamics near the invariant manifold. jittle is known about their stability and whether they respect
Though the models we have considered here are simple, ogie invariance principle. It would be interesting to find out
observations demonstrate that relaxation to the inVariarWhether good Closure approximations Correspond to invari_

manifold may be very slow depending on the flow. ant manifolds, identify them, and learn about their stability.
(i) For more difficult models, such as the FENE model,\n/ork in this direction is currently in preparation.

finding invariant manifold is a difficult task. However, there
exist methods to derive approximate invariant manifolds by ~Authors gratefully acknowledge the comments of Profes-
iteration procedurefs]. It has been shown recently that the sor H. C. Qtinger.
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